Horizontal cells reveal cone type-specific adaptation in primate retina.

نویسندگان

  • B B Lee
  • D M Dacey
  • V C Smith
  • J Pokorny
چکیده

The human cone visual system maintains contrast sensitivity over a wide range of ambient illumination, a property known as light adaptation. The first stage in light adaptation is believed to take place at the first neural step in vision, within the long, middle, and short wavelength sensitive cone photoreceptors. To determine the properties of adaptation in primate outer retina, we measured cone signals in second-order interneurons, the horizontal cells, of the macaque monkey. Horizontal cells provide a unique site for studying early adaptational mechanisms; they are but one synapse away from the photoreceptors, and each horizontal cell receives excitatory inputs from many cones. Light adaptation occurred over the entire range of light levels evaluated, a luminance range of 15-1,850 trolands. Adaptation was demonstrated to be independent in each cone type and to be spatially restricted. Thus, in primates, a major source of sensitivity regulation occurs before summation of cone signals in the horizontal cell.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primate horizontal cell dynamics: an analysis of sensitivity regulation in the outer retina.

The human cone visual system maintains sensitivity over a broad range of illumination, from below 1 troland to 1,000,000 trolands. While the cone photoreceptors themselves are an important locus for sensitivity regulation-or light adaptation-the degree to which they contribute in primates remains unclear. To determine the range of sensitivity regulation in the outer retina, the temporal dynamic...

متن کامل

A cellular and molecular model of response kinetics and adaptation in primate cones and horizontal cells.

A model for the sensitivity regulation in the primate outer retina is developed and validated using horizontal cell measurements from the literature. The main conclusion is that the phototransduction of the cones is the key factor regulating sensitivity. The model consists of a nonlinearity cascaded with three feedback control loops. The nonlinearity is caused by the hydrolysis of cGMP by activ...

متن کامل

A model of spatiotemporal signal processing by primate cones and horizontal cells

A model of spatiotemporal signal processing by the cone–horizontal cell circuit in the primate outer retina is developed and validated using measurements on the H1 horizontal cell from the literature. The model extends an earlier temporal model that mainly addressed the regulation of sensitivity by the cones. Three elements are added to the earlier model to describe the full spatiotemporal proc...

متن کامل

Circuitry for color coding in the primate retina.

Human color vision starts with the signals from three cone photoreceptor types, maximally sensitive to long (L-cone), middle (M-cone), and short (S-cone) wavelengths. Within the retina these signals combine in an antagonistic way to form red-green and blue-yellow spectral opponent pathways. In the classical model this antagonism is thought to arise from the convergence of cone type-specific exc...

متن کامل

A model of spatiotemporal signal processing by primate cones and horizontal cells.

A model of spatiotemporal signal processing by the cone-horizontal cell circuit in the primate outer retina is developed and validated using measurements on the H1 horizontal cell from the literature. The model extends an earlier temporal model that mainly addressed the regulation of sensitivity by the cones. Three elements are added to the earlier model to describe the full spatiotemporal proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 25  شماره 

صفحات  -

تاریخ انتشار 1999